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Abstract

Many existing techniques for image restoration can be expressed in terms of minimizing a particular

cost function. Iterative regularization methods are a novel variation on this theme where the cost function

is not fixed, but rather refined iteratively at each step. This provides an unprecedented degree of control

over the tradeoff between the bias and variance of the image estimate, which can result in improved

overall estimation error. This useful property, along with the provable convergence properties of the

sequence of estimates produced by these iterative regularization methods lend themselves to a variety of

useful applications. In this paper, we introduce a general set of iterative regularization methods, discuss

some of their properties and applications, and include examples to illustrate them.

I. INTRODUCTION

It is useful to consider perhaps the most typical of image restoration problems1 first; namely denoising.

Typically, one models a measured image as a “true image” plus some error (random noise, film granularity,

etc.) We can write this as:

y = x + v (1)

where x is the true image that we wish to recover, and v is the zero-mean noise. The problem of

recovering x from the data y in this simplified model is the canonical image reconstruction problem of

“ denoising.”
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Denoising Technique J(x)

Tikhonov [1] λ

2
‖x‖2

Total Variation [2], [3] λ‖|∇x|‖1

Bilateral Filter [4], [5], [6] λ

2

� N

n=−N
[x− Snx]T Wy,n [x − Snx]

TABLE I

VARIOUS DENOISING TECHNIQUES AND THEIR ASSOCIATED REGULARIZATION TERMS.

A very extensive body of work exists with many different techniques for addressing this problem. We

will focus on what are known as “ regularization methods,” and will specifically present a fundamental

extension of these methods to what we call “ iterative regularization” methods. Classically, regularization

is a very general technique for estimating x from the data y by minimizing a cost function of the form:

x̂ = arg min
x

C(x,y) = arg min
x

{H(x,y) + J(x)} . (2)

For denoising problems the functional H(x,y) = 1

2
‖y − x‖2 is typically used, forcing the Euclidean

distance between the measured data and the true signal to be minimized. The second term in the above

cost function, J(x), is the (generally convex) regularization functional. The regularization functional

has the dual purpose of introducing prior information into the solution, encouraging it to have certain

desirable properties; and to numerically stabilize the problem, avoiding useless solutions2. Generally, the

exact form of J(x) varies depending on the particular regularization method, but it usually enforces some

additional soft constraint on the estimate. In the Bayesian interpretation of (1), x is assumed to be a

random variable with some prior distribution. In this case, the regularization term, J(x), can be viewed

as the log likelihood or a priori information about the distribution of x.

Some examples of J(x) for a few different regularization cost functions are given in Table I. The

parameter λ in J(x) is known as the regularization parameter and acts as a weight on the prior information.

Therefore, the amount of weight given to the prior can be varied by changing λ.

Tikhonov regularization is a classical method ([1]) where the functional (J(x)) forces the energy of the

estimate to be minimized. Total Variation (TV) regularization is a more recent image denoising method

developed originally by Rudin, Osher, and Fatemei [7]. The TV regularization functional forces the L1-

norm of the image gradient to be minimized. This has the effect of making the resulting image appear to

2Without the regularization terms, minimizing H(x,y) = 1

2
‖y−x‖2 for instance, would yield the trivial solution of �x = y!
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be piecewise constant. The Bilateral Filter was first proposed as a spatially adaptive filter for denoising by

Tomasi and Manduchi in [8]. It was later connected to regularization by Elad in [4]. In the regularization

term corresponding to the Bilateral Filter in Table I, Sn is a matrix shift operator and Wy,n is a matrix of

weights where these are a function of both the radiometric (or gray-value) and spatial distances between

pixels in a local neighborhood ([4],[5]).

Figure 1 is an example of an estimate of a true image produced by using the Bilateral Filter. By looking

at the estimate residual (y − x̂) we notice that we have removed some of the high frequency content of

the image along with the noise. Similar results can be observed for other regularization methods as well

as other general techniques of denoising, as it is never possible to recover x exactly.

(a) (b)

(c) (d)

Fig. 1. (a) Detail of the original ‘ Barbara’ image (b) ‘ Barbara’ with added white Gaussian noise of variance 29.5 (MSE= 29.50)

(c) The result of minimizing the Bilateral cost function for the noisy image (b) (MSE= 19.30) (d) The residual (b)-(c)

There is indeed a natural, and well-known, trade-off between the amount of noise removed, and image

detail retained in the regularized estimate. More regularization will remove more noise but will also lose

more image detail, and vice versa. Iterative regularization methods presented in this paper exploit this

tradeoff to obtain an improved estimate.
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II. ITERATIVE REGULARIZATION METHODS

Iterative regularization methods seek to improve the traditional regularized image estimate by iteratively

updating the cost function of choice. Mathematically, this concept can be expressed as follows:

x̂k+1 = arg min
x

Ck(x,y), (3)

where by definition, x̂1 is the minimizer of (2). The estimate at each iteration can be thought of as the

minimizer of a revised cost function Ck(x,y), which is part of a sequence of cost functions updated

according to some rule, as we will elucidate in detail below. To summarize, however, the sequence of

cost functions is generally constructed using some (possibly nonlinear) combination of the original data

y, and the previous estimate x̂k. It is important to note at this point that iterative regularization involves

two levels of iteration. In particular, at each stage (for each fixed k) a distinct cost function (Ck(x,y))

is minimized, using some iterative method such as steepest descent. In what follows, unless explicitly

stated otherwise, these are not the iterations to which we refer. Instead, “ iteration” below refers to the

process of updating the estimate x̂k indexed by k.

The true objective of the iterative regularization approach is that it will yield (for some appropriate

stopping index k∗ – more on this later), an estimate x̂k∗ which will have the smallest mean-squared error

as compared to all the other members of the sequence {x̂k}. The main benefit of such an approach is the

level of control given to the user by gradually (and iteratively) adding the lost detail back to the initial

regularized estimate, but there are a few other incidental benefits as well. Normally the user must select

some operating parameters (such as λ) for a particular cost function. The resulting methods that depend

strongly on this careful choice of regularization parameter implicitly assume some clairvoyance on the

part of the user to produce good results. The iterative approach, on the other hand, allows the initial

parameter selection to be essentially arbitrary (that is, one that may yield a poor regularized estimate

either visually or in some metric such as mean-squared error) and still produce a satisfactory final estimate

after several updates of the cost function, and its subsequent numerical minimization. While this approach

certainly results in increased computational complexity, one must keep in mind that automatic methods

for selecting parameters such as λ (e.g. cross-validation methods [9]) are also computationally costly,

and rather less generally useful.

As we will illustrate later, the proposed iterative methods asymptotically converge back (in the L2

norm) to the initial data when the initial cost function is C1(x,y) = 1

2
‖y − x‖2 + J(x), and J(x) is

assumed to be a non-negative convex function3. This means that by iterating we can gradually ”undo”

3For proof of convergence of these methods, we refer the interested reader to [10] chapter 4, sections 1-4.
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the highly non-linear effect of the initial regularization. This property allows several practical image

processing applications of these methods to be realized.

Perhaps one of the earliest proponents of the type of iterative approaches we promote here was the

influential statistician John Tukey (1915-2000). Tukey’s idea of “ twicing”, which he published in his

1977 landmark book Exploratory Data Analysis ([11]), did not specifically refer to carrying out more

than one iteration, though he should be credited with the very original idea. Mathematically, this general

”twicing” method can be formulated as:

x̂k+1 = x̂1 +
k∑

i=1

arg min
x

{H (x,y − x̂i) + J(x)} , where x̂1 = arg min
x

{H (x,y) + J(x)} .

As should be apparent from the above, at each iteration, the residual (difference between the estimate

and the data) is used to find a “ correction” term which improves the previous estimate. For instance,

after the first iteration this is most clear: x̂2 = x̂1 + arg minx {H (x,y − x̂1) + J(x)}.

More recently, some instances of iterative regularization have been studied in the literature in the

past decade (for instance in applications to tomographic reconstruction [12]), but a systematic study of

such methods was not undertaken until very recently. In particular, in an effort to patch the undesirable

”stair-casing” effect observed in the popular Digital Total Variation (TV) methods [3] (though it should

be said that this behavior was observed earlier as well), Osher et al. [2] recently proposed an iterative

regularization technique which can be formulated as:

x̂k+1 = arg min
x

{
H

(
x,y +

k∑

i=1

(y − x̂i)

)
+ J(x)

}
.

In this framework, in contrast to Tukey’s method, the sum of the residuals has been added back to the

noisy image and the result is processed again. The intuition here is that if, at each iteration, the residual

contains more signal than noise, the estimate, x̂k, will improve.

In what follows, we present an additional method of iterative regularization, which has interesting

properties, specific applications, and proves useful in illuminating the framework in general.

To simplify the presentation, let us define the operator B(·) to denote the net effect of minimizing the

cost function defined in (2); that is: B(y) ≡ arg minx {H (x,y) + J (x)}). With this notation in place,

we can write the above described methods, and the proposed iterative regularization method in shorthand
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as follows:

1) Osher et al. [2]: x̂k+1 = B

(
y +

k∑

i=1

(y − x̂i)

)
, (4)

2) Tukey [11]: x̂k+1 = B(y) +

k∑

i=1

B(y − x̂i), (5)

3) Proposed: x̂k+1 = B(y) +

k∑

i=1

(B(y) − B(x̂i)) (6)

= (k + 1)B(y) −
k∑

i=1

B(x̂i) = (k + 1)x̂1 −
k∑

i=1

B(x̂i).

As was proved in [10], the above methods share very similar convergence properties, even though they

do not generally produce the same minimum MSE results 4.

Summarizing what we have presented so far: (a) we have attempted to make a case for the use of

iterative regularization methods in general, where the most notable application of these in denoising

has already been demonstrated in [2], [13], and [14]; (b) we related the various forms of iterative

regularization and elucidated some connections among them; and (c) we proposed a new approach to

iterative regularization – namely 3) above, which was first introduced in [14], [10]. In what follows, we

will dissect this proposed method, describe its special properties, and make use of it for some applications.

Proposed Method: Unsharp Residual Iteration (URI) The remainder of this paper is concerned with

further analysis of this method and its applications. To establish a connection to some familiar linear

filtering techniques, we recall the well-known process of (linear) unsharp masking whereby edges are en-

hanced by subtracting a blurred version of an image from the image itself [15]. The iterative regularization

method that we focus on bears a resemblance to unsharp masking in terms of its structure.

To further elucidate this connection, and to seek a more intuitive presentation of the method, we note

that (6) implies:

x̂k = kx̂1 −
k−1∑

i=1

B(x̂i),

4We briefly comment that the above methods are related by a linear distribution of B(·). But since B(·) is not a linear operator,

the methods are therefore quite distinct. Many different variations of these methods can be derived following this framework,

as outlined in [10]
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which means that we can write

x̂k+1 = (k + 1)x̂1 −
k∑

i=1

B(x̂i) = kx̂1 −
k−1∑

i=1

B(x̂i) + (x̂1 −B(x̂k)) (7)

= x̂k + (x̂1 − B(x̂k)) = x̂1 + (x̂k − B(x̂k)) . (8)

In (8) above, the “ residual” term which updates the original estimate x̂1 to yield x̂k+1 is the difference

between the last estimate x̂k and a nonlinearly “filtered” version of it, namely B(x̂k). Hence, we propose

to call the method “Unsharp Residual Iteration” (URI). We illustrate this method in Figure 2 using a

block diagram, where we define x̃k ≡ B(x̂k).

��
��

��
��

-

- - - -
x̃k

x̂1

y

x̂k x̂k+1

+

−

B (·)

B (·)

?

6

Fig. 2. URI Block Diagram

As an illustrative example, we show the effect of the URI procedure on a portion of the noisy Barbara

image in Figure 3. In this example, where the regularization function J(x) was selected as the digital TV

term (but can be any convex functional) introduced in Table I, the initial estimate x̂1, along with the next

two iterates, and the corresponding residuals, are shown. For this example, the regularization parameters

were selected to produce the lowest overall mean-squared error estimate. The smallest MSE estimate

occurs at the second iteration. This is typical in that the smallest MSE estimate is usually arrived at in

fewer than five iterations. In practical use for applications such as denoising [14] when the underlying

image is unknown, a question worthy of further research is the matter of finding a stopping criterion

which will automatically end the iterations when the optimal MSE is reached. Such a criterion may for

instance be constructed based on the statistics of the residual terms. Here, similar to [2], we use an

estimate of variance of the residual images to propose an empirical stopping criterion.

With URI (as well as the other iterative regularization methods) some lost detail is added back to the

image estimate at each iteration, and simultaneously, some noise is also added to the image estimate at

each iteration. The general trend of the estimate x̂k (as proved in [10] and illustrated in Figure 5) is to

monotonically approach the true image x first (with corresponding monotonic decrease in MSE); then,

when the noise content of the estimate x̃k drops below a critical level (in comparison to the level of
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lost detail), the estimate x̂k begins to asymptotically approach the noisy image y (with corresponding

increase in the MSE).

We can look at ‖y−x̂k‖
2 as a way to gauge how close the image estimate is to the noisy measured image

y. With an arbitrary initial guess, the value of this metric will generally start out high and decrease as the

image estimate begins to approach the underlying image x. Assuming that y is corrupted by Gaussian

white noise, as x̂k approaches x, ‖y − x̂k‖
2 → δ2, where δ2 is the variance of the corrupting noise in

y. Thus, following [2], we propose ‖y − x̂k‖
2 ≤ δ2 as an empirical stopping criterion for URI. While

the noise level δ2 may not be directly known to the user, an estimate of it can generally be computed.

All the examples illustrated in the paper have used the same stopping criterion where applicable. To

independently illustrate the use of this stopping criterion, we present another example. White Gaussian

noise with a variance of 50 was added to the image in Figure 4a to produce Figure 4b. Next, 10 iterations

of URI were applied to Figure 4b using the bilateral filter regularization with the following parameters:

N = 2, σr = 110, and σd = 1.5. For completeness, the best estimate, x̂4 is shown in Figure 4c. In Figure

4d we see that the best (lowest MSE) estimate occurs at iteration 4. The metric used to determine the

stopping criterion is plotted against iteration number in Figure 4e. The intersection of this curve with the

horizontal line representing the value of δ2 indicates that the iterative regularization process should be

stopped at 4 iterations. Thus we observe that the the stopping criterion has accurately indicated when to

stop iterating.

To measure the behavior of any algorithm in recovering the true signal x from the data y, the mean-

squared error (MSE) is a natural choice. The MSE is defined as mse(x̂) = E
[
(x̂ − x)2

]
, where x̂ is the

estimate and x is the underlying signal. As is well-known, we can rewrite the MSE as

mse(x̂) = E
(
[(x̂− E(x̂)) + (E(x̂) − x)]2

)

= E
[
(x̂ − E(x̂))2

]
+ 2 E [(x̂ − E(x̂)) (E(x̂) − x)] + E

[
(E(x̂) − x)2

]

= var(x̂) + 0 + (E(x̂) − x)2 = var(x̂) + bias2(x),

which illustrates the useful fact that MSE is the sum of the estimate variance and squared-bias [16]. We

use the next experiment to show the bias-variance properties of URI experimentally using Monte-Carlo

simulations. The other iterative regularization methods mentioned above have quite similar bias-variance

tradeoffs and these have been catalogued extensively in [14], [10]. We mention again here that in all cases,

the bias tends toward zero with increasing number of iterations, while the variance tends to converge to

the variance of the corrupting noise. However, as alluded to earlier, these methods do not produce the

same minimum MSE estimates, and their relative performance is highly dependant on the image content,
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(a) x̂1 (b) x̃1 (c) x̂1 − x̃1

(d) x̂2 = x̂1 + (x̂1 − x̃1) (e) x̃2 (f) x̂1 − x̃2

(g) x̂3 = x̂2 + (x̂1 − x̃2) (h) x̃3 (i) x̂1 − x̃3

Fig. 3. Noisy data is the same as that in Figure 1. (a) The first estimate produced by URI with Total Variation regularization

(MSE=26.76). (b) The estimate produced from (a). (c) The residual between (a) and (b). (d) The second estimate produced by

URI (MSE=18.09) from summing (a) and (c). (e) The estimate produced from (d). (f) The residual between (a) and (e). (g) The

third estimate produced by URI method (MSE=20.22) from summing (a), (c), and (f). (h) The estimate produced from (g). (i)

The residual between (a) and (h).

and the noise variance, and the regularization functional.

To carry out these Monte-Carlo simulations, we add a realization of random (Gaussian) noise with a

variance of 29.5 to the ‘Barbara’image. A series of estimates (x̂1 through x̂10) are computed from this

noisy image using the proposed URI method (8). This process is repeated for a total of 50 different noise

realizations. Next, the average variance, bias, and MSE are calculated from these realizations at each

iteration (x̂1 through x̂10).

In Figure 5 we have plotted the average MSE, variance, and squared-bias of URI as a function of

iteration number. Two different regularization functionals (Total Variation and Bilateral Filter) were used

9



(a) x (b) y (c) x̂4

1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

40

45

50
URI Mean−Squared Error

iterations

MSE of estimate
MSE of data

1 2 3 4 5 6 7 8 9 10
40

45

50

55

60

65

70

75

80

85
URI Stopping Criteria

iterations

Stopping Criteria Metric
Data Noise Level

(d) (e)

Fig. 4. (a) The original image. (b) The image corrupted with noise of variance δ2 = 50. (c) The best estimate for the given

parameters. (d) Plot of the mean-squared error of �xk vs. iteration. (e) Plot of the stopping criterion vs. iteration.

for comparison. The operating parameters for each of the regularization functionals were selected to yield

the overall lowest MSE. For the Bilateral [8] regularization we used kernel size N = 2 (5 × 5), spatial

blur parameter σd = 1.1, and radiometric blur parameter σr = 23. For the Total Variation Regularization

[3] we used regularization parameter λ = .32 and 50 steepest descent iterations5. For details on the

implementation of either of these regularization methods, we refer the reader to [8] and [3], respectively.

Interestingly, we also observed that the best overall MSE estimate is arrived at by initially applying a

relatively large amount of regularization such that the first estimate has a low variance (due to the removal

of noise) but a high bias (due to the loss of high frequency image details). The bias then decreases as we

iterate and more of the “ lost detail” is returned to the estimate. Some noise is also returned along with

the detail, causing the variance to increase. The MSE, being the sum of these two statistics is optimal at

the point in the iterative process where we get the best tradeoff between restored texture and suppressed

5Note that the steepest descent iterations are performed for each optimization of a cost function (e.g. 50 steepest descent

iterations are done for each URI iteration)
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(a) Bilateral (b) Total Variation

Fig. 5. Average MSE, variance, and squared-bias of the estimates �xk of the noisy versions of the ‘Barbara’ image, using URI

with (a) Bilateral and (b) Total Variation regularization functionals.

noise.

As a comparison between URI and the methods of Osher et al. [2] and Tukey [11] we include an

experiment (using the Bilateral Filter as the regularization functional) in Figure 8. The image tested

was ‘Barbara’ with white Gaussian noise of variance 29.5 added just as in the above experiments. The

Bilateral Filter kernel size for all of the methods was fixed to N = 2 and the radiometric and spatial

blur parameters were selected to produce the best overall result respectively.

III. APPLICATION TO TEXTURE AND GRAIN MANIPULATION AND TRANSFER

The ability to efficiently transfer the texture from one image to another finds uses in a variety of areas

[17]. For artistic effect, it may be desirable to add grainy texture to images captured on digital media.

Composite images may combine elements from different photographs into one; or sometimes a computer

generated image is combined with a real one. It is often desirable that the perceived texture across the

composite image be consistent. Also, high frequency textures such as hair or sand can be difficult or

labor intensive to implement in computer generated images. In some instances it would be advantageous

to simply extract the texture from a real image and transfer it to another (possibly computer generated)

image. Aside from published academic work (see [17] for an overview,) commercial products such as

’Grain Surgery’ (http://www.visinf.com/gs/ps/ ) have also been developed to accomplish these types of

tasks. Our method offers a computationally attractive alternative.

The simplest (but not most effective) way to accomplish the texture transfer is to apply either Total

Variation or Bilateral Filter Regularization to the source image y containing the desired texture, resulting
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in an approximately piecewise-constant image x̂1. The texture information (y − x̂1) thus captured can

then be added to the textureless image z with proper normalization. We can express this process as:

ẑ = z + N (y − x̂1), (9)

where N (·) is a normalization of the image gray values such that the texture and target images are in the

same proper dynamic range. Instead of this brute-force method, there is a significant advantage to using

URI to transfer the texture; namely more control. By transferring texture from image y to image z as:

ẑk = z + N

(
k∑

i=1

(x̂i − x̃i)

)
(10)

we can control the amount of texture that is transferred, easily optimizing the appearance of the resulting

image.

In Figure 6 we show an example of this technique. We use Bilateral Filter regularization with kernel

size N = 2, spatial parameter σd = 1.1, and radiometric parameter σr = 50 to iteratively add the texture

from a texture source image (Figure 6b) to the target image in Figure 6a. A simple intensity threshold

was used to define the region of interest receiving texture. Notice how the transferred texture becomes

more pronounced as the number of iterations increases. Figure 6f is an example of texture transfer using

the a trial version of the commercially available software ’Grain Surgery’ mentioned above.

To demonstrate another example and application, we present in Figure 7 an instance where film grain

has been removed from a scanned 35-mm photo, yielding a “ cartoon” version of the image. Then the

grain texture is returned to a high-quality compressed version of this cartoon, by iterative application of

URI without direct knowledge of the original image. For both of the above examples, the regularization

parameter λ was selected such that the most visually appealing results were obtained.

IV. CONCLUSIONS

Iterated regularization presents a very general methodology for image decomposition and reconstruc-

tion. Under this framework we have related the independently derived methods of Osher et al. [2] and

Tukey [11] and proposed a new method. We illustrated this proposed method as well-suited to applications

in texture and grain synthesis and transfer. Generally, each of the iterative regularization methods describes

a technique for gradually returning the removed detail to an initially nonlinearly filtered estimate. The

true generality of the framework lies in the fact that any form of regularization may be used in this

context. One can think of any image restoration method as simply a black box, where the presented

framework yields several ways to feed back the estimate into this black box and improve the overall

reconstruction quality.
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(a) z (b) y (c) ẑ2

(d) ẑ4 (e) ẑ10 (f) ‘Grain Surgery’ result

Fig. 6. (a) The original image without any texture added. (b) The texture source. (c) The result of one URI iteration (with

Bilateral Filter Regularization) to transfer the texture of the image in (b) to the image in (a). (d) The result of three URI

iterations. (e) The result of nine URI iterations. (f) Transfer of same texture using commercially available software (cross-hatch

pattern is added as part of the trial version of the software).

A question that is relevant to all the above methods is “ What overall cost function do these iterative

methods minimize?” That is to say, is the iterative regularization implicitly minimizing some (“ hidden”),

global, cost function that is not explicitly given? This question remains an interesting open problem.

Finally, though this paper only dealt with the noisy data model (1), it is possible (as briefly described

in [14]) to further extend the analysis presented here to the more general case, where the data (y) is

modeled as y = Ax + v where A is a convolution (blur) operator. Some initial results on this idea are

reported in [10], [14].
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